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ABSTRACT

Clinical identification and rating of the cerebral microbleeds
(CMBs) are important in vascular diseases and dementia di-
agnosis. However, manual labeling is time-consuming with
low reproducibility. In this paper, we present an automat-
ic method via deep learning based 3D feature representation,
which solves this detection problem with three steps: candi-
dates localization with high sensitivity, feature representation,
and precise classification for reducing false positives. Differ-
ent from previous methods by exploiting low-level features,
e.g., shape features and intensity values, we utilize the deep
learning based high-level feature representation. Experimen-
tal results validate the efficacy of our approach, which outper-
forms other methods by a large margin with a high sensitivity
while significantly reducing false positives per subject .

Index Terms— cerebral microbleeds, feature representa-
tion, deep learning, object detection

1. INTRODUCTION

Cerebral microbleeds (CMBs) are small haemorrhages of
blood vessels in the brain, which are prevalent in the elderly
population. As shown in Fig. 1, they appear as hypointense,
rounded and sporadic lesions in susceptibility weighted imag-
ing (SWI) scans. Recently, CMBs have been recognized as an
important biomarker of neurovascular pathology by providing
evidence of microvascular damage and leakiness [1]. Identi-
fying the incidence of CMBs could help to assess the risk of
intracerebral hemorrhage [2] and reveal the etiopathogenesis
of cerebrovascular disease and neurodegenerative dementia,
e.g., Alzheimer’s disease [3].

The clinical manual labeling method is time-consuming
and subjective with limited reproducibility. Therefore, the de-
velopment of automatic detection methods would improve the
pathological examination efficiency and reliability. Howev-
er, this is challenging since CMB mimics (e.g., susceptibility
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Fig. 1. Examples of true CMBs (green rectangles) and CMB
mimics (red rectangles).

artifacts, vein tissues and calcification) carrying similar mor-
phological appearance could cause many false positive pre-
dictions in the detection process [1].

Many researchers have been working on this challenging
problem. Seghier et al. [4] developed a detection method
using automated segmentation and mixtures of Gaussians.
Barnes et al. [5] presented a semi-automatic method to iden-
tify CMBs from other hypointensities in SWI by using the
support vector machine (SVM). Bian et al. [6] proposed to lo-
cate potential CMB candidates with 2D fast radial symmetry
transform (RST), followed by removing false positives (FPs)
with geometric feature examination. Fazlollahi et al. [7] uti-
lized a novel cascade of random forest (RF) classifiers trained
on Randon transform based features to detect CMBs. One
main limitation of previous methods is that they only consider
low-level features including shape, compactness and size for
CMBs detection, and may need a post manual review process
for eliminating the large number of FPs.

Recently, deep learning has made breakthroughs in object
detection with powerful feature representation in different do-
mains [8, 9, 10, 11]. However, it has not been well explored
on anatomy detection in 3D medical image modalities, e.g.,
SWI. In this paper, we propose to automatically detect the
microbleeds in SWI by taking advantage of the deep learning
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based 3D feature representation.

2. METHOD

The pipeline of our proposed detection framework consists of
three steps: CMB candidates localization, feature representa-
tion and classification. For the first step, the CMB candidates
are located with high sensitivity by statistical thresholding.
Then the deep convolutional neural network (CNN) is utilized
for hierarchical 3D feature representation. Finally, the SVM
classifier is trained on the features to distinguish true CMB-
s and CMB mimics. This step can improve the precision of
detection by reducing a large number of false positives while
preserving high sensitivity.

2.1. CMB candidates localization

We first analyse the intensity distribution of CMBs on nor-
malized scans, then a binary image is produced by setting a
statistical threshold. The center cn of each candidate is ob-
tained as the centroid of 3D growing connected component.
Furthermore, connected components with unrealistic large or
small size are removed. Using statistical threshold method
can easily remove a large number of regions, which are obvi-
ously not CMBs. Thus each candidate is represented as a 3D
volume xn ∈ Rs1×s2×s3 centered at cn.

2.2. Deep learning based 3D feature representation

Deep CNN has been successful in object recognition with
powerful feature representation when large amounts of da-
ta are available. However, direct adoption of CNN with 2D
convolutional filters in 3D medical imaging modalities could
face the risk of over-fitting. Because more input channels
of the third dimension could introduce more weights in the
neural network compared to less input channels, e.g., RGB
image (3 channels). Moreover, limited available data can de-
grade the performance, especially in medical domain. Based
on these analyses, we propose to extract the deep hierarchi-
cal high-level features from 2D (transverse plane) MRI slices
xin ∈ Is1×s2 (i = 1, 2, ..., s3), then concatenate them as 3D
feature representation, as shown in Fig. 2. It aims at increas-
ing the number of training samples and reducing the number
of parameters in neural network. In order to train such a C-
NN extractor, 2D slices of ground truth are extracted as the
positive samples and negative samples are randomly selected
away from ground truths more than 10 mm. The parameters
θ = {W, b} of weight and bias in CNN are trained by mini-
mizing the following loss function of negative log likelihood.

L(Ij , yj ; θ) = −yj log pj − (1− yj) log(1− pj) (1)

θ̂ = argmin
θ

M∑
j=1

L(Ij , yj ; θ) (2)

where pj is the output posterior probability of CNN given the
jth input Ij , yj ∈ {0, 1} is the corresponding ground truth
and M is the number of training samples. In order to improve
the generalization ability, the strategies of data augmentation
and dropout [12] are implemented in the training process for
regularization. Ultimately, the third dimensional information
of one volume sample xn is complemented by concatenating
the extracted features in consecutive slices xin, as shown in
Eq. 4.

f in = g(xin, θ̂), x
i
n ∈ Is1×s2 , i = 1, ..., s3 (3)

fn = C{f1n, ..., fs3n } (4)

where f in is the extracted feature vector of input xin via deep
compositional non-linear function g(xin, θ̂), which is the neu-
ron activations in the penultimate layer of CNN and fn is the
3D feature representation after concatenation operation C.

. . . 

. . 

. . . 

. . 

. . . 
 

 

 

C 
M 

C: Convolution 

M: Max Pooling 

   CMB 

   Non-CMB 

C 
M 

 

 

 

Fig. 2. The overview of 3D feature representation.

2.3. Classification with 3D feature representation

To remove the large number of FP CMBs effectively, a SVM
classifier [13] is trained with L2 regularization on proposed
3D feature representation fn, as shown in Eq. 5.

argmin
w

1

2
wTw + λ

N∑
n=1

max(0, 1− wT tnfn)2 (5)

where tn is the ground truth for 3D sample xn, N is the num-
ber of training samples and λ is the regularization constant.

3. EXPERIMENTS AND RESULTS

3.1. Materials and data preprocessing

The data set contains a total of 117 CMBs from 20 elderly
subjects (mean age 78.6) with transient ischemic attack (TIA).
SWI images were acquired on a 3.0T Philips Medical System
with following parameters: volume size 512× 512× 150, in-
plane resolution 0.45× 0.45mm2, 2mm slice thickness and
1mm slice spacing. The ground truth was labelled by experi-
enced neuroradiologists. The whole data set was divided into
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Fig. 3. Intensity value distribution of CMB.

two sections for training and testing (5 patients with a total of
55 CMBs), respectively. In the preprocessing step, the image
intensity range of each patient was normalized to [0, 1], as
shown in Eq. 6.

V ′ =
V − Vmin

Vmax − Vmin
(6)

where V is the original volume data and V ′ is the normalized
volume data. Note that the Vmax is the maximum intensity af-
ter trimming the top 1% intensity values for consistence. For
the training process, the positive samples were acquired ac-
cording to the ground truth labelled with experienced experts.
And the negative samples were randomly selected in the im-
age which are not overlapped with the ground truth. The size
of each sample was 16× 16× 9. Since the CMB is invariant
to rotation and translation, additional positive training sam-
ples were augmented by rotating φ ∈ {90 ∗ k}◦, k = 1 ∼ 3
and translating d = 1 ∼ 4 voxels around the ground truth.

3.2. CMB candidates localization

In order to locate the CMB candidates, a binary image was
produced by setting the threshold T = 0.468 after analyzing
the intensity value distribution of CMB, as shown in Fig. 3.
The unrealistic large components were removed after 3D re-
gion growing. This step can achieve a high recall with 95.65%
while removing most of redundant regions. However, it sacri-
ficed with a large number of FPs (more than 800 per subject).

3.3. Quantitative evaluation and comparison

We compared the performance of our approach with the meth-
ods of CNN and RF. Noting that different from the proposed
approach, the input of CNN method was direct 3D volume
data. It was trained with stochastic gradient descent by min-
imizing the loss function of negative log likelihood. For the
method of RF, the training samples were first input into the
RF for classification with negative training samples random-
ly selected. Since the random negative samples may not be
representative, we added the FP samples which had been pre-
dicted by the first RF classifier into the training samples and
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Fig. 4. Example of CMB detection: (a) RF, (b) our method
(green rectangles for CMBs, red rectangles for positive pre-
dictions of each method).
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Fig. 5. Example of CMB detection: (a) CNN, (b) our method
(green rectangles for CMBs, red rectangles for positive pre-
dictions of each method).

re-trained the RF classifier, which performed better than the
first classifier.

From the results of different methods shown in Table 1,
we can see that our framework can outperform other method-
s by a large margin with less number of FPs while preserv-
ing high sensitivity (or recall). Some detection examples and
transverse slices with two-interval in each example are shown
in Fig. 4 and Fig. 5. The performance of Precision-Recall
(PR) plane in Fig. 6 proves the effectiveness of our method.
For the evaluation of FPs, Free-response Receiver Operating
Characteristic (FROC) curves of different methods in Fig. 7
show the sensitivity against the average number of FPs per
patient, our method can achieve about 90% recall with aver-
age 6.4 FPs per subject. The FPs of our approach are mainly
blood vessels, which carry the similar morphological appear-
ance with true CMBs. Overall, our approach generally took

Table 1. The results of different methods

Method Sensitivity Precision F1-score Average FPs

RF 0.8696 0.3540 0.5031 14.6
CNN 0.8696 0.3922 0.5405 12.4
Ours 0.8913 0.5616 0.6891 6.4
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Fig. 6. Performance of different methods in PR plane.
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Fig. 7. Comparison of FROC curves of different methods.

less than 20 seconds for detecting the CMBs from one patient
using a laptop with a 2.60 GHz Intel(R) i5-4278U CPU.

4. CONCLUSIONS

In this paper, we propose an automatic method for CMB de-
tection with deep learning based 3D feature representation.
Feature representation encoding high-level information can
benefit the classification between CMB and its mimics. Ex-
periments on clinical data validated the efficacy of our ap-
proach. In the future, we will apply it in clinical practice and
compare its performance with experienced neuroradiologists.
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